An Introduction to Evidential Reasoning for Decision Making under Uncertainty: Bayesian and Belief Functions Perspectives
نویسنده
چکیده
The main purpose of this article is to introduce the evidential reasoning approach, a research methodology, for decision making under uncertainty. Bayesian framework and Dempster-Shafer theory of belief functions are used to model uncertainties in the decision problem. We first introduce the basics of the DS theory and then discuss the evidential reasoning approach and related concepts. Next, we demonstrate how specific decision models can be developed from the basic evidential diagrams under the two frameworks. It is interesting to note that it is quite efficient to develop Bayesian models of the decision problems using the evidential reasoning approach compared to using the ladder diagram approach as used in the auditing literature. In addition, we compare the decision models developed in this paper with similar models developed in the literature.
منابع مشابه
Comprehensive Decision Modeling of Reverse Logistics System: A Multi-criteria Decision Making Model by using Hybrid Evidential Reasoning Approach and TOPSIS (TECHNICAL NOTE)
In the last two decades, product recovery systems have received increasing attention due to several reasons such as new governmental regulations and economic advantages. One of the most important activities of these systems is to assign returned products to suitable reverse manufacturing alternatives. Uncertainty of returned products in terms of quantity, quality, and time complicates the decis...
متن کاملbelief function and the transferable belief model
Beliefs are the result of uncertainty. Sometimes uncertainty is because of a random process and sometimes the result of lack of information. In the past, the only solution in situations of uncertainty has been the probability theory. But the past few decades, various theories of other variables and systems are put forward for the systems with no adequate and accurate information. One of these a...
متن کاملIntroduction to the ER Rule for Evidence Combination
The Evidential Reasoning (ER) approach has been developed to support multiple criteria decision making (MCDM ) under uncertainty. It is built upon Dempster’s rule for evidence combination and uses belief functions for dealing with probabilistic uncertainty and ignorance. In this introductory paper, following a brief introduction to Dempster’s rule and the ER approach, we report the discovery of...
متن کاملLogic, Knowledge Representation, and Bayesian Decision Theory
In this paper I give a brief overview of recent work on uncertainty inAI, and relate it to logical representations. Bayesian decision theory and logic are both normative frameworks for reasoning that emphasize different aspects of intelligent reasoning. Belief networks (Bayesian networks) are representations of independence that form the basis for understanding much of the recent work on reason...
متن کاملA Dynamic Evidential Fusion Network for Decision Making in Multi- Robot System
In smart environments, a multi-robot system is difficult to achieve a high confidence level of information for reliable decision making. The pieces of sensed information obtained from a multi-robot system have different degrees of uncertainty. Generated contexts about the situation of the environment can be conflicting even if they are acquired by simultaneous operations. In particular, unpredi...
متن کامل